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Generalization of Mass Formula in Unitary Symmetries* 
MUNEER AHMAD RASHID AND IAN IWAO YAMANAKA 

Imperial College, London, England 

Okubo's mass formula for unitary symmetries is generalized to any order. It is shown that the number 
of terms in a formula for a representation true to all orders is exactly the same as the number of isotopic 
multiplets contained in the representation. This result also holds for strong interaction symmetries based 
on other rank-2 groups. 

I. INTRODUCTION 

ON E of the convincing features of unitary symmetry 
models1,2 for strong interactions of elementary 

particles has been the success of the first-order mass 
relation derived by Okubo.3 His recent derivation of the 
second-order relation4 has prompted us to obtain its 
generalization to any order. In Sec. I I , we define the 
medium-strong interaction to order n pEq. (2.2)] which 
allows us to write the generalization almost immediately 
(Sec. I I I ) . For particular representations, however, 
simplification is achieved through the property of the 
interaction that all the components of the irreducible 
tensors appearing in its reduction commute with the 
operators N, S, and I. From this we conclude (Theorem 
I of Sec. IV) that these tensors must be of the symmetry 
tyPe (/> 0, — / ) . Corresponding to the multiplicity 
df(^f+1) of this representation in the reduction of the 
direct product of a representation D and its contragra-
dient D, there exist dj linearly independent tensor 
operators of the above symmetry type that can be con
structed from the generators and give rise to the only 
nonvanishing matrix elements contributing to the mass 
formula. In Appendix I I we are able to select these from 
a set of / + 1 that are added to the mass formula at the 
fth. stage. This gives us the formula for a particular 
representation D to any given order n (Sec. IV). A 
simple corollary is the exact relation for it which holds 
to all orders. This contains the same number of terms as 
the number of isotopic multiplets in the basis for the 
representation. Section V deals with the consequences. 

II. SYMMETRY BREAKING INTERACTION 

In the unitary symmetry models of Sakata2 and Gell-
Mann-Ne'eman,1 the strong interaction Lagrangian is 
considered to be invariant under the groups U(3) and 
SU(3)/Cz, respectively. This results in the classification 
of elementary particles as degenerate supermultiplets 
which form bases for the irreducible representations of 

* The research reported in this document has been sponsored in 
part by Air Force Office of Scientific Research, OAR, through the 
European Office, Aerospace Research, U. S. Air Force. 
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these groups. If the symmetries were exact, all the 
members of these supermultiplets would have the same 
mass. However, this does not appear to be the case in 
nature and attempts have been made to break these 
symmetries in a manner which removes the mass de
generacy and gives the correct mass spectrum. These 
attempts are primarily based upon Pais'5 philosophy of 
a hierarchy of interactions in which a sequence of very 
strong, medium strong, electromagnetic, etc. interac
tions are assumed to exist in nature with progressively 
weaker symmetries. In other words, the interaction 
Lagrangian can be written as 

-* v s i - * m s T L e m l " * j 

where JTVS, the very strong part, is invariant under the 
full symmetry group £11(3) or SU(3)/Cz in the unitary 
symmetry models]; the medium strong 7m s under a 
subgroup of the full group which in turn includes the 
subgroup that leaves the electromagnetic interaction 
/em invariant. Since Ims and Iem respect only a part of 
the full symmetry, their application will remove the 
mass degeneracy in two stages: In the first stage when 
the medium-strong interaction is switched on, the super 
multiplets subdivide into isotopic multiplets which con
tain a number of degenerate entities; turning on the 
electromagnetic interaction completely removes the de
generacy, resulting in mass splittings between all the 
members of the supermultiplets. 

We concern ourselves with the first stage only. If no 
restriction is imposed on the form of the medium-
strong interaction (sometimes called, the symmetry-
breaking interaction in the text) obviously no progress 
whatsoever can be made. As our goal at this stage is to 
break the supermultiplets into isotopic multiplets, we 
suppose that the medium-strong interaction is an 
operator T that commutes with the isotopic spin, 
strangeness, and nucleon-number operators I, S, N, re
spectively, (Assumption I) . This restriction is highly 
reasonable as we are still in the realm of strong inter
actions where strangeness and nucleon number are con
served, and any noncommutation with I will result in 
mass splittings between different members of the 
isotopic multiplets. 

The above restriction alone is still not sufficient for 
our purpose. We therefore make the further assump-

6 A. Pais, Phys. Rev. 86, 633 (1952). 
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tion6 (in analogy with electromagnetism) that the 
operator, to lowest order, transforms, as the adjoint 
representation of the group7 (Assumption II). These 
conditions then fix the operator (to lowest order) as the 
r3

3 component of a tensor T/. This tensor 71/, in 
SU3/Cz is irreducible. However, in £7(3), as the adjoint 
representation is reducible, we can write it as 

T / - 5 / + M / , (2.1) 

where M/ is irreducible and transforms as the 8-dimen-
sional representation. 

Henceforth, we shall confine ourselves to the U(3) 
scheme which is simpler to deal with. The results, how
ever, apply to both the schemes. 

To nth order, we take this operator to be 

r n = r3
3+r33r3

8+ • • •+r3
8r3

3- • • r3
3 <» *«*«> 

= EII7Y, 
where 

nr 3
3=r 3

3 r 3
3 - - - r 3

3^ f a c t o r s ) . 

(2.2) 

(2.3) 

Since every product of tensors TV is reducible under 
U{3), we can express (2.3) as 

I I ?Y= E ar(53
3)'M33...3

33'"3 ""'time.) , 
i r=0 

where M33...3
33"'3 (&times) is a component of an irre

ducible tensor. 
Thus, 

Tn= E E a7(S3
3)'M33..,3

33-3 ("time.). (2.4) 

From our first assumption 

Cr3
3,i]=[r3

3,5]=C7V,Aa-o 

and Eq. (2.1) above, it follows that Mi also commutes 
with I, N, S. By induction now 

[M3...3
3--^I]-[M3...3

3 '-V]=[^3...33--'VV] = 0. (2.5) 

We note that Okubo's expression 7Y+ T33
33 is equivalent 

to our TY+TYIY as both of these reduce to 

ahz+bMi+cMz£K 

III. GENERALIZATION OF OKUBO'S MASS 
FORMULA 

U(3) has nine generators AS which satisfy the com
mutation relations 

ZAAAfl^SSAf-BfifiA,*. (3.1) 

The irreducible representations/)^ Uhfzjz) arechar-

6 This assumption is the same as that made by Gell-Mann 
(Ref. 1) and Okubo (Ref. 3). 

7 Transformation law for a tensor belonging to the adjoint 
representation is given in Eq. (3.7). 

acterized by 3 integers / i , /a, fs such that 

(3.2) 

Then we have 

and 

J)=s(—/3j —/2, -~/i) is the representation contragra-
dient to D. 

From now onwards the word "representation" will 
refer only to an irreducible representation. 

To obtain the different values of I and S contained in 
the basis of a representation Z)= {fij^jz), we determine 
all pairs of numbers / / , ft such that8 

/ = J ( / i ' - / * ' ) (3.4) 

S-fi'+tf-Ui+ft+fz). (3.5) 

Note. N in the Sakata model ZU(3) scheme] is 
given by 

N=f1+f2+f*. (3.6) 

However, it is outside the symmetry group SU{3)/C% in 
the Gell-Mann-Ne'eman model. 

A tensor T / transforming as the adjoint representa
tion satisfies the commutation relation 

Lemma I. In any representation 

( ^ ^ ^ • • • ^ ) 3 3 . . . 3 3 3 - 3 ( m t i m e 8 ) 

V J 

n factors 

= E arSt(8^y(A^y((AA)^y. (3.8) 
Y, S, /J>0 

r -J-s -H —m 

Proof. We have 

[ i 3 V 3 3 ] = [ i 3 3 , ( i i ) 3
3 ] = [ ( i i ) 3 3 , ( i i ) 3

3 ] = 0. 

Since the Casimir operators (AA), (AAA) commute 
with the generators A/, the lemma follows from Eq. 
(A10) in Ref. 3 on replacing T / by A/. 

Theorem I. The mass formula to order n for every 
representation is a sum of %[m(n+l)(n+2)2 terms, and 
can be written as 

Af»= E E ^ [ / ( J + l ) - ^ ] ^ ^ , (3.9) 
i=0 2=0 

where aij are parameters depending upon the representa
tion but independent of the sub quantum numbers / 
and S. 

Proof. From Eq. (2.2) we have 

M»=(D,f\Tn\D,f), 

where D is any arbitrary representation of U(3) and \[/ 
any vector in its basis. 

As the associative algebra CL generated by the 
8 H. Weyl, The Classical Groups (Princeton University Press, 

Princeton, New Jersey, 1939). 
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infinitesimal generators of £7(3) within a representation 
is the whole matrix algebra over the representation 
space,9 we can write the above matrix element for Mn as 
a sum of matrix elements of suitable operators con
structed from the generators of the group. Thus, by 
Lemma I 

M"= £ E<A^|ft«(^.,)i-,'C(^)»*]'lA^>-
i=0 ?=0 

The mass formula follows from this when we write 

(AA)^=lI(I+l)~lS"']+aS+b1 

where a and b are independent of I and S. 

IV. SPECIALIZATION TO PARTICULAR 
REPRESENTATIONS 

In the case of the 10-dimensional representation Gell-
Mann10 remarked that the first-order formula 

M^.a+bS+cZKJ+V-l&l 
reduces to 

on account of the relation 

/=l+iS. 
We wish to point out that the second-order formula4 

M2 = a+bS+clI(I+l)-iS2~j+dS2 

+ eSU(I+l)-iS*l+fLl(I+V-±S'J, 
when applied to the 8-dimensional representation 
becomes 

M 8
2 = a ' + 6 ' 5 + c ' [ / ( / + 1 ) - | 5 2 ]+ r f ' 5 2 

as a result of the relations 

s/(/+i)=is 
S*=S 

/( /+l)[/(/+l)-2]=-ifS2 . 
In order to see when and why this happens, we shall 
look at the formula from a different point of view. In 
Eq. (2.4) we expressed Tn, the symmetry-breaking 
interaction to nth order, as a sum of components of 
irreducible tensors. Each one of these components com
mutes with the operators N, S and I £see Eq. (2.5)]. 
Therefore, these appear only in the irreducible tensors 
which correspond to the representations (with iV=0) 
containing in their bases an isotopic multiplet with 
7 = 5 = 0 . The representations can only be of the form 
(/, 0, — f) as we prove below. 

Lemma II. In representations (/i, f% fz) with N—0, 

9 This follows from Schur's lemma. See also J. Ginibre in Ref. 11, 
10 M. Gell-Mann, in Proceedings of the 1962 Annual International 

Conference on High-Energy Physics at CERN (CERN Scientific 
Information Service, Geneva, 1962), p. 805. See also, S. L. Glashow 
and J. J. Sakurai, Nuovo Cimento 26, 622 (1962). 

the isotopic multiplet 7 = 5 = 0 occurs only when 
/ 8 = - / l , / 2 = 0 . 

Proof. From Eqs. (3.4), (3.5), and (3.6) we obtain on 
setting I=S=N=0, 

fl=f2, fl=—f2, 

i.e., fi=f2=0. Now using (3), fz—0. Finally from 
(3 .6 ) , / ,= - / i . 

Remark. The group SU3/Cz in the Gell-Mann-
Ne'eman model has the representations (/i, f^ fz) with 
a restriction which may be taken as 

/ i+ /2+/a = 0. 

So the lemma holds equally well though N is outside the 
symmetry group. 

We have seen that the irreducible tensors in the 
expression of the symmetry-breaking operator all belong 
to the representations of the form (/, 0, —-/). Now we 
consider the reduction of the direct product D®D,U in 
which we see that the representation (/, 0, — / ) occurs 
at most / + 1 times. (This is a special case of Theorem 
A.I proved in Appendix A.) This gives us the / + 1 terms 
in the formula (3.9) which were added at the / t h 
stage. However for a particular D, the representation 
(/, 0L — / ) may not occur / + 1 times in the reduction of 
D<g)D. (See Theorem A.I of Appendix A.) When this 
happens there exist relations which allow a reduction in 
the number of terms added at the / t h stage to exactly 
the number of times the _ representation (/, 0, — / ) 
occurs in the reduction D®D. (See lemmas in Appendix 
B and Theorem A.I.) Hence, the mass formula to order 
n applicable to a particular representation D will be 

M D " = E E 1 af£I{I+l)-lS*yS'-<, (4.1) 
/ = 0 3=0 

when df is the number of times the representation 
(/> 0, — / ) occurs in the reduction D(&D. 

It is also clear from Theorem A.I that the representa
tions (/, 0, —/) with / > fi—fz do not occur at all in the 
reduction of the direct product D®D. From this it 
follows that an exact formula for D (true to all orders) is 

MD = MD^V (i* = fi-f2,v = f2-f9). (4.2) 

The total number of terms in this formula is equal to 

H+v 

E df (4.3) 
/=o 

which by Theorem A.I is also 

(M+l)(Hhl) . (4.4) 

Now as each one of these representations (/, 0, —/) 
contains 7 = 5 = 0 just once, (/*+1) (H~ 1) is also equal to 

11 This approach is similar to that employed in the following: 
N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1962); B. Diu 
(to be published); J. Ginibre (to be published). 
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the number of times 7 = 5 = 0 multiplets occur in the 
direct product of D and D. We now prove 

Theorem II. The number of times 7 = 5 = 0 multiplets 
occurs in the direct product D®D is equal to the number 
of isotopic multiplets in the representation D. 

Proof. The representations D and D consist of isotopic 
multiplets of the form (7,5), (7 /,5 /) where the set of 
7 /(5 /) is the same as that of 7 (—5). From (7,5) and 
(7',6") we obtain 

i+i' 

E V,s+S'). 
I - | / - 7 ' | 

This series contains 7 = 5 = 0 if and only if 

s+s'=o=i-r, 
i.e., when Sf——S, V — I, Therefore, there exists a 
unique solution for (7 /,5 /) for each (7,5) which satisfies 
the theorem. 

Thus, each of the multiplets (7,5) of D gives rise to 
one and only one me_thod of constructing 7 = 5 = 0 in the 
direct product D®D. 

Finally, we conclude from the theorem that the mass 
formula MD has exactly the same number of parameters 
as the number of isotopic multiplets in D. 

I t is clear that the above result also holds for strong 
interaction symmetries based on other rank-2 groups. 

V. CONCLUSION 

The conclusion reached at the end of the last section 
about the number of parameters is not unexpected as 
the group-theoretic approach gives the kinematical 
structure only. The detailed dynamics is contained in 
the values of these parameters and future efforts should 
be directed towards an understanding of their relation
ship with the spatial properties like spin and parity, etc. 

An interesting feature is the observation that the mass 
formula to first order when applied to baryon and 
pseudoscalar meson octets gives a good fit. The same 
probably happens in the case of the baryon-meson 
resonances forming the 10-dimensional representation. 
A calculation based on 1238-, 1385-, and 1535-MeV 
masses of N*, Si, Si predicts the mass of the fourth pz/2 

resonance as 1680 MeV. Should such a resonance be 
found, the values of the parameters c and d in the general 
formula 

Mio= a+bY+cY2+dY* ( F = A 7 + 5 ) 

would be almost zero. Although the calculations above 
are not perturbation theoretic, the rapid convergence of 
the "series" presents us with a puzzle. I t is a useful con
jecture to consider some of the last few parameters in an 
exact formula to be zero as a starting point for predict
ing the position of new resonances and their assignment 
to various representations. The case of the vector-
meson octet appears to be somewhat involved. 
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APPENDIX A 

Theorem A.I. In the reduction of the direct product 
of a representation Z>= (fhfafz) with its contragradient 
D= (—/3, — fa —/i) the representation (/, 0, —/) oc
curs d/ times, where 

df= 

0 
lt+v-f+1 
M+l 
v+1 
/+1 

when 
when 
when 
when 
when 

H+v<f 
/*</ , v<j 
/*</ , v>f 
&L *</ 
vZL v^f 

but n+v^f 

and M = / I — fa v = f2~fz. 
Proof. The theorem can be proved by working with 

the characters. However, we use the much simpler pro
cedure of multiplying Young's tableau. As some of the 
integers labeling the representations D and D are nega
tive, we first of all consider the representations 

Di= (fi-fa h-fa 0 ) s fa+v, v, 0 ) , 

Di= Ui-fa fi-fa 0 ) = fa+v, M, 0) . 

The corresponding Young's tableau for Di (Si) has 
li+v squares in the first row and v [p) squares in 
the second. We are interested_ in the representation 
(/> °> —/) i n t n e product D®D. As 7>i (Pi) has been 
obtained from D (D) by subtracting / 3 (—/i) from each 
of the three integers labeling the representation, we 
should look for the representation (/, 0—/) in the 
product Di®Di as associated with the Young's tableau 

(f+fi~f*,fi-f*,-f+fi-fz) 
= fa+v+f, fi+v, V+v—f) . 

To obtain the product diagrams (see Fig. 1), we write 
a's (jS's) in the squares in the first (second) row of the 

fJL + V 

V 
® 

J-K.+ V 

h 

—____—.—_«__—__ 

V H-

yu,^y-f 

f © 

FIG. 1. Decomposition of D\<&D\ by Young's Tableau. 
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diagram Di and then adjoin these squares containing en's 
and jff's, in this order, to the diagram D\ such that (i) the 
final diagram has always ^ 3 rows; (ii) when we finish 
adjoining squares containing a's 03's), it is a Young's 
tableau; (iii) the adjoined a's and /5's when read from 
the right, exhausting the first row first, and then the 
second, etc., form a lattice order, i.e., at each stage in 
this order the number of a's is not less than the number 
of /3's. 

In this product we are interested in the diagrams with 
li+v+f, y+v, /z+i>—/squares in the first, second, and 
third rows, respectively. This is obtained by adding / 
squares containing a's to the first row of D± followed by 
/*, fx+v—f squares containing some a's and some /3's to 
the second and third rows in a manner that satisfies the 
3 conditions stated above. The condition (ii), requires /3 
additions in the second and third rows to be always on 
the right of all a's. The condition (iii) of lattice order 
says that the number of /3's to be added to the second 
row must be ^ / . Thus, the number of diagrams of the 
above type in the product can be at most / + 1 (corre
sponding to 0, 1, 2, • • • / number of /3's added to the 
second row). 

However, all these cases are not always possible. To 
examine this carefully, let us first consider ix. If /x^ / all 
the / + 1 cases might be possible. But when / * < / only 
/x+1 of these cases (which correspond to 0, 1, 2, • • -JJL 
addition of /3's to the second row) are possible. All these 
cases will definitely be possible if we can fill all the 
squares in the second row with the rest of the a's. As 
there are only y+v—f squares to be adjoined to the 
third row, this requires \x+v—j^\x or v^ f. On the 
other hand, when /x+ v—f<fx or equivalently v<f, then 
/x— (ji+v—j) = /— v /3's (at least) will have to be added 
to the second row. This will reduce the number of 
possibilities in each of the above cases by exactly /— v 
to (f+l)-(f-v) = v+l and (fjL+l)r(f-v)TUL+v 
— / + 1 , respectively. Since the condition (iii) is also 
satisfied by each one of these cases, the theorem follows. 

APPENDIX B 

M a s s Formula for a Part icular Representat ion 

To derive the mass formula MDn for a representation 
D we need the following lemmas: 

Throughout this Appendix we take D= C/1,/2,/3) and 

Lemma B.I. In any irreducible representation D 
of U{3): 

(i) I takes the n+v+1 distinct values 0, J, 1, • • •, 
iOu+J') with multiplicities 1,2,- • -v, v+1, v+1,- • -v+1, 
v, v—1, • • • 1, respectively. 

(ii) 5 takes the n+v+1 distinct values /1+ /2—n , 
/1+/2— 1 — n, •••, jr\-ji—"n with multiplicities 1, 2, 
• • -V, v+1, v+1, - - ' H - l , v, '' *> 1, respectively, with 

FIG. 2. The (I,S) plot for a representation {J\j2,fz)> 

The proof follows from Eqs. (3.3), (3.4), and (3.5). 
Lemma B.II. The points (7,5) corresponding to the 

isotopic multiplets in D form a lattice consisting of v-j-1 
( M + 1 ) equally spaced parallel lines with equations of 
the form 

I=±$+c(I=-±$+c'). 

Proof. Eliminating / / and / 2 ' in turn from Eqs. (3.4) 
and (3.5) we obtain 

I=iS-h'+Ufi+h+fz) (Bl) 

I=-hS+fi'-h(fi+f*+fi)- (B2) 

Corresponding to v+1 ( M + 1 ) different fixed values of 
U (fi) (Bl) and (B2) are the equations referred to in 
the lemma. 

From Lemmas B.I and B.II we can construct the 
following lattice of points (7,5) for the representation 
D (Fig. 2). 

Lemma BUI. If A and B are any functions satisfying 

(i) A^^Y, aiA
v~i^Bi+ E ctiiAW (B3) 

i—l t-\-j<v-\-l 

and 
v-l 3 

(ii) AiBM+H-i-2;+ ^ £ a.jkAkB„+*-i-k 

yx=o fc=0 

H—v—1 v 

+ E yvkAtB* (B4) 

for i — 0 , 1 , 2, • • • ^, then all other expressions of the form 
AaBP(a,l3^0) not included in the above equations are 
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6 f\B - -

ft [R 
) 

RB 

R6 

rftr"1 

! 

tT 

R 6' 

ft B 

** 

^"1 

FIG. 3. Schematic representation of terms 
appearing in the mass formula. 

also expressible in terms of quantities on the right in 
Eq. (B4). 

The quantities Av+1, A ^B^v+l~2i appearing on the left-
hand side of the above equations are enclosed in squares 
in Fig. 3. Equation (B3) has on its right-hand side 
quantities in the (v+ l ) s t column except Av+l and those 
on the left of this column. The quantities on the right-
hand side of the Eqs. (B4) are all the quantities below 
the zig-zag line. The content of the lemma is that all the 
quantities in the figure above the zig-zag line and not in 
the squares are expressible in terms of the ones below 
this line provided that the quantities in the squares 
satisfy (B3) and (B4). 

The proof of the above assertion is trivial: We start 
with the expression (B3) for Av+1 and multiply it first by 
B and then by A obtaining expressions for AV+1B and 
Ap+2 in terms of the quantities on the right-hand side of 
(B3) and the ones in v-\-2nd column below the zig-zag 
line. This process is repeated. Slight modification is 
needed when we approach the stage where we want to 
express the quantities in the column headed by A1**1. 

Lemma B.IV. The conditions (B3) and (B4) in 
Lemma B.III are, in fact, satisfied by the functions 

A=I(I+l)-iS* 

B = S. 
Proof, (i) From Lemma B.II we see 

points of Fig. 2 satisfy the relation 
that all the 

H-l 

n (/(/+«- -!SM-J#S+*) = 0. 

This is condition (B3). (ii) To prove Eq. (B4) we divide 
the set of points in Fig. 2 into two sets Si, S/ 
(i=0, 1, • • •, v) as follows: 

Let S take the distinct values sh s2, • • • VI-H-I e x _ 

pressed as a monotonically increasing sequence. For 
i^O, suppose the set Si consists of all the points having 
S as any of 

si, s2, Sn+p—i-\-2, * * ' Sp+vj Sn+v+ly 

and let So be the null set. The set S/ consists of the 
remaining points in the figure. Consider first i^O. I t is 
clear from Lemma B.I that the set 5* consists oii(i+1) 
points. Si can, therefore, determine a set of values of the 
i(i+l) ratios of the (i(i+l)+l) constants aIS such that 

d(i(i+i)-is*y 

+ E a r s [ / ( / + l ) - i S 2 ] r S * = 0 (B5) 
2r+s<2i 

r,s>0 

is satisfied by all the points of the set. Here d is neces
sarily nonzero, for if it were zero, Eq. (B5) which is now 
of at most i— 1 degree in 7 (7+1) , cannot satisfy all the 
i distinct points with S=S{ because the corresponding 
7(7+1) are necessarily distinct and positive definite. 

Thus, all the points of the figure satisfy the set of 
equations 

[ 7 ( 7 + l ) - i ^ ] H - £ ^ l [ 7 ( 7 + l ) - i ^ ] ^ j 
2r+s<2i d J 

r, s>0 

X ( 5 - si+l) • • •, ( 5 - ^+v-;+i) - 0. (B6) 

When i = 0 we have instead 

( S - s O G S - ^ ) - ' •> (S -VfM- iHO. (B7) 

These give condition (B4), 


